CSES - Aalto Competitive Programming 2024 - wk6 - Homework - Results
Submission details
Task:Shortest Routes I
Sender:Nallue
Submission time:2024-10-06 13:52:56 +0300
Language:C++ (C++11)
Status:READY
Result:
Test results
testverdicttime
#10.00 sdetails
#20.00 sdetails
#30.00 sdetails
#40.00 sdetails
#50.00 sdetails
#60.00 sdetails
#70.00 sdetails
#80.00 sdetails
#90.00 sdetails
#100.00 sdetails
#110.00 sdetails
#120.00 sdetails
#130.00 sdetails
#140.00 sdetails
#150.00 sdetails
#160.00 sdetails
#170.01 sdetails
#180.00 sdetails

Compiler report

input/code.cpp: In function 'int minDistance(int*, bool*)':
input/code.cpp:24:12: warning: 'min_index' may be used uninitialized in this function [-Wmaybe-uninitialized]
   24 |     return min_index;
      |            ^~~~~~~~~
input/code.cpp: In function 'void dijkstra(int (*)[9], int)':
input/code.cpp:77:26: warning: 'min_index' may be used uninitialized in this function [-Wmaybe-uninitialized]
   77 |                 && dist[u] != INT_MAX
      |                    ~~~~~~^

Code

// C++ program for Dijkstra's single source shortest path
// algorithm. The program is for adjacency matrix
// representation of the graph
#include <iostream>
using namespace std;
#include <limits.h>

// Number of vertices in the graph
#define V 9

// A utility function to find the vertex with minimum
// distance value, from the set of vertices not yet included
// in shortest path tree
int minDistance(int dist[], bool sptSet[])
{

    // Initialize min value
    int min = INT_MAX, min_index;

    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)
            min = dist[v], min_index = v;

    return min_index;
}

// A utility function to print the constructed distance
// array
void printSolution(int dist[])
{
    cout << "Vertex \t Distance from Source" << endl;
    for (int i = 0; i < V; i++)
        cout << i << " \t\t\t\t" << dist[i] << endl;
}

// Function that implements Dijkstra's single source
// shortest path algorithm for a graph represented using
// adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
    int dist[V]; // The output array.  dist[i] will hold the
                 // shortest
    // distance from src to i

    bool sptSet[V]; // sptSet[i] will be true if vertex i is
                    // included in shortest
    // path tree or shortest distance from src to i is
    // finalized

    // Initialize all distances as INFINITE and stpSet[] as
    // false
    for (int i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = false;

    // Distance of source vertex from itself is always 0
    dist[src] = 0;

    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++) {
        // Pick the minimum distance vertex from the set of
        // vertices not yet processed. u is always equal to
        // src in the first iteration.
        int u = minDistance(dist, sptSet);

        // Mark the picked vertex as processed
        sptSet[u] = true;

        // Update dist value of the adjacent vertices of the
        // picked vertex.
        for (int v = 0; v < V; v++)

            // Update dist[v] only if is not in sptSet,
            // there is an edge from u to v, and total
            // weight of path from src to  v through u is
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v]
                && dist[u] != INT_MAX
                && dist[u] + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    }

    // print the constructed distance array
    printSolution(dist);
}

// driver's code
int main()
{

    /* Let us create the example graph discussed above */
    int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
                        { 4, 0, 8, 0, 0, 0, 0, 11, 0 },
                        { 0, 8, 0, 7, 0, 4, 0, 0, 2 },
                        { 0, 0, 7, 0, 9, 14, 0, 0, 0 },
                        { 0, 0, 0, 9, 0, 10, 0, 0, 0 },
                        { 0, 0, 4, 14, 10, 0, 2, 0, 0 },
                        { 0, 0, 0, 0, 0, 2, 0, 1, 6 },
                        { 8, 11, 0, 0, 0, 0, 1, 0, 7 },
                        { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };

    // Function call
    dijkstra(graph, 0);

    return 0;
}

// This code is contributed by shivanisinghss2110

Test details

Test 1

Verdict:

input
10 20
8 5 1
9 10 2
7 9 8
9 8 8
...

correct output
0 9 11 20 13 14 19 29 27 29 

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 2

Verdict:

input
10 20
5 6 4
5 1 7
7 4 4
7 8 1
...

correct output
0 7 9 17 15 17 21 22 25 30 

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 3

Verdict:

input
10 20
1 4 1
4 2 1
9 10 1
1 2 4
...

correct output
0 2 11 1 2 7 16 18 12 13 

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 4

Verdict:

input
10 20
6 3 5
7 5 8
5 1 8
8 9 5
...

correct output
0 5 9 18 22 10 14 23 27 36 

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 5

Verdict:

input
10 20
8 9 3
2 3 8
10 5 3
2 5 3
...

correct output
0 8 16 18 11 17 24 23 16 26 

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 6

Verdict:

input
100000 200000
18000 18001 426710313
73018 73012 558438094
87726 87671 355171790
53170 53171 869493690
...

correct output
0 479659405 1165315262 1854343...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 7

Verdict:

input
100000 200000
26504 26450 258578924
49543 49544 28958186
75174 75175 89459846
39175 39228 119699475
...

correct output
0 655556128 1413395076 1814086...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 8

Verdict:

input
100000 200000
39477 39413 773046299
69758 69759 558754983
23279 23280 142570619
61416 61479 874921013
...

correct output
0 269736525 626115013 70199222...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 9

Verdict:

input
100000 200000
76662 76636 844365635
73339 73342 755006676
89878 89879 396562588
18801 18781 954807004
...

correct output
0 598585836 1267139909 1803859...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 10

Verdict:

input
100000 200000
11724 11725 818399968
33244 33197 722525474
65530 65531 483965413
62405 62454 199581867
...

correct output
0 387990617 441010945 92441292...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 11

Verdict:

input
100000 200000
1 2 1
1 3 1
1 4 1
1 5 1
...

correct output
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 12

Verdict:

input
100000 99999
1 2 1000000000
2 3 1000000000
3 4 1000000000
4 5 1000000000
...

correct output
0 1000000000 2000000000 300000...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 13

Verdict:

input
1 1
1 1 1

correct output

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 14

Verdict:

input
99999 149997
1 2 1
2 3 1
3 4 1
4 5 1
...

correct output
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 ...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 15

Verdict:

input
99997 149994
1 3 3
3 5 3
5 7 3
7 9 3
...

correct output
0 1 2 3 4 5 6 7 8 9 10 11 12 1...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 16

Verdict:

input
60003 120000
1 2 30010
1 3 30010
1 4 30010
1 5 30010
...

correct output
0 30010 30010 30010 30010 3001...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 17

Verdict:

input
60003 120000
1 2 30010
1 3 30010
1 4 30010
1 5 30010
...

correct output
0 30010 30010 30010 30010 3001...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated

Test 18

Verdict:

input
100000 149997
1 50000 99997
1 49999 99995
1 49998 99993
1 49997 99991
...

correct output
0 1 3 5 7 9 11 13 15 17 19 21 ...

user output
Vertex   Distance from Source
0  0
1  4
2  12
3  19
...
Truncated