CSES - Datatähti 2016 alku - Results
Submission details
Task:Lennot
Sender:hugo-hur
Submission time:2015-10-06 17:11:51 +0300
Language:C++
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
#30
Test results
testverdicttimegroup
#10.05 s1details
#2ACCEPTED0.06 s1details
#3ACCEPTED0.05 s1details
#40.06 s1details
#50.06 s1details
#60.06 s2details
#70.05 s2details
#80.06 s2details
#90.07 s2details
#100.07 s2details
#110.41 s3details
#120.47 s3details
#130.41 s3details
#140.48 s3details
#150.34 s3details
#160.40 s3details
#170.39 s3details

Code

#include <iostream>
#include <vector>
#include <string>
#include <list>
#include <limits> // for numeric_limits
#include <set>
#include <utility> // for pair
#include <algorithm>
#include <iterator>
using namespace std;
class Flight
{
public:
Flight(unsigned int from, unsigned int to, unsigned int price);
unsigned int from, to, price;
};
Flight::Flight(unsigned int from, unsigned int to, unsigned int price){
this->from = from; this->to = to; this->price = price;
}
// Number of vertices in the graph
typedef int vertex_t;
typedef double weight_t;
const weight_t max_weight = std::numeric_limits<double>::infinity();
struct neighbor {
vertex_t target;
weight_t weight;
neighbor(vertex_t arg_target, weight_t arg_weight)
: target(arg_target), weight(arg_weight) { }
};
typedef std::vector<std::vector<neighbor> > adjacency_list_t;
void DijkstraComputePaths(vertex_t source,
const adjacency_list_t &adjacency_list,
std::vector<weight_t> &min_distance,
std::vector<vertex_t> &previous)
{
int n = adjacency_list.size();
min_distance.clear();
min_distance.resize(n, max_weight);
min_distance[source] = 0;
previous.clear();
previous.resize(n, -1);
std::set<std::pair<weight_t, vertex_t> > vertex_queue;
vertex_queue.insert(std::make_pair(min_distance[source], source));
//bool free = true;
while (!vertex_queue.empty())
{
//free = !free;
weight_t dist = vertex_queue.begin()->first;
vertex_t u = vertex_queue.begin()->second;
vertex_queue.erase(vertex_queue.begin());
// Visit each edge exiting u
const std::vector<neighbor> &neighbors = adjacency_list[u];
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
neighbor_iter != neighbors.end();
neighbor_iter++)
{
vertex_t v = neighbor_iter->target;
weight_t weight = neighbor_iter->weight;
//Each other flight free -> dist = 0
/*if (free){
weight = 0;
}*/
weight_t distance_through_u = dist + weight;
if (distance_through_u < min_distance[v]) {
vertex_queue.erase(std::make_pair(min_distance[v], v));
min_distance[v] = distance_through_u;
previous[v] = u;
vertex_queue.insert(std::make_pair(min_distance[v], v));
}
}
}
}
std::list<vertex_t> DijkstraGetShortestPathTo(
vertex_t vertex, const std::vector<vertex_t> &previous)
{
std::list<vertex_t> path;
for (; vertex != -1; vertex = previous[vertex])
path.push_front(vertex);
return path;
}
/*unsigned int** createMatrix(std::vector <Flight> flights){
//unsigned int* matrix = new unsigned int[3];
//unsigned int** matrix2 = new unsigned int*[flights.size()];
//matrix2
}*/
adjacency_list_t createGraph(vector<Flight> flights, unsigned int n){
unsigned int v = n;//flights.size();
vector<vector<unsigned int>> graph;
for (unsigned int i = 0; i < v; i++){
//unsigned int* p = new unsigned int[v];
graph.push_back(vector<unsigned int>());
for (unsigned int z = 0; z < v; z++){
graph.back().push_back(0);
}
}
adjacency_list_t adjList(n);
//Arrange flights by "from"
//For all flights with start point of 1 check the price to dest
for (Flight f : flights){
adjList[f.from - 1].push_back(neighbor(f.to - 1, f.price));// [f.to - 1] = f.price;
}
return adjList;
}
// Driver program to test methods of graph class
int main()
{
/* Let us create the example graph discussed above */
//Price as a distance
unsigned int n = 0;
unsigned int m = 0;
cin >> n;
cin >> m;
//V = n;
vector<Flight> flights;
for (unsigned int i = 0; i < m; i++){
unsigned int from, to, price;
cin >> from >> to >> price;
flights.push_back(Flight(from, to, price));
}
//cin >> V;
//vector<Flight> flights;
//flights.push_back(Flight(1, n, 100));
//flights.push_back(Flight(1, 2, 10));
//flights.push_back(Flight(2, n, 10));
adjacency_list_t adjacency_list = createGraph(flights, n);
//graph[0][1] = 3;
//graph[0][2] = 5;
//graph[1][0] = 2;
//{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
//{ 0, 0, 4, 0, 10, 0, 2, 0, 0 },
//{ 0, 0, 0, 14, 0, 2, 0, 1, 6 },
//{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
//{ 0, 0, 2, 0, 0, 0, 6, 7, 0 }
std::vector<weight_t> min_distance;
std::vector<vertex_t> previous;
DijkstraComputePaths(0, adjacency_list, min_distance, previous);
//unsigned int price = min_distance[n - 1];
std::list<vertex_t> path = DijkstraGetShortestPathTo(n - 1, previous);
unsigned long price = 0;
//bool free = true;
while(path.size() != 0){
//std::cout << path.front() + 1 << ' ';
unsigned int flightStartPlace = path.front() + 1;
path.pop_front();
unsigned int flightEndPlace = path.front() + 1;
for (Flight f : flights){
if (f.from == flightStartPlace && f.to == flightEndPlace){
//free = !free;
//if (free){ break; }
price += f.price;
break;
}
}
//price += flights.at(index).price;
//path.pop_front();
if (path.size() == 0){ break; }
path.pop_front();
}
//std::copy(path.begin(), path.end(), std::ostream_iterator<vertex_t>(std::cout, " "));
std::cout << price << std::endl;
return 0;
}

Test details

Test 1

Group: 1

Verdict:

input
10 20
2 1 3
7 6 4
1 6 7
1 6 1
...

correct output
8

user output
13

Test 2

Group: 1

Verdict: ACCEPTED

input
10 20
4 3 10
1 10 9
3 4 10
2 6 7
...

correct output
9

user output
9

Test 3

Group: 1

Verdict: ACCEPTED

input
10 20
5 7 4
6 1 1
7 3 8
8 4 2
...

correct output
8

user output
8

Test 4

Group: 1

Verdict:

input
10 20
1 6 2
5 3 3
7 3 6
5 6 2
...

correct output
13

user output
16

Test 5

Group: 1

Verdict:

input
10 20
10 8 5
2 4 7
9 4 7
9 4 1
...

correct output
4

user output
9

Test 6

Group: 2

Verdict:

input
1000 2000
91 828 365044406
17 984 445675537
251 852 100987451
907 487 58830088
...

correct output
11893353673

user output
17399614092

Test 7

Group: 2

Verdict:

input
1000 2000
722 939 530579090
404 606 268877348
133 750 760086153
506 46 582310443
...

correct output
30248963445

user output
37827922539

Test 8

Group: 2

Verdict:

input
1000 2000
340 237 43690066
217 141 453160975
744 202 639037814
605 926 404985542
...

correct output
3126797692

user output
4698779400

Test 9

Group: 2

Verdict:

input
1000 2000
88 312 190442306
480 402 411574469
29 901 397491243
636 459 323246996
...

correct output
18416073173

user output
23723668956

Test 10

Group: 2

Verdict:

input
1000 2000
333 228 718389176
796 286 323493090
743 43 751876815
128 554 175625940
...

correct output
6399349335

user output
9284350877

Test 11

Group: 3

Verdict:

input
100000 200000
28264 92686 186865663
92570 33956 925976418
87377 71249 644757113
16701 81203 922125505
...

correct output
518249578675

user output
(empty)

Test 12

Group: 3

Verdict:

input
100000 200000
95740 71482 846654568
44131 16806 670712211
3967 49254 424174139
39369 53007 830346557
...

correct output
920862321580

user output
(empty)

Test 13

Group: 3

Verdict:

input
100000 200000
79947 25489 71554257
59184 25577 328436360
82945 73554 4942918
22380 92385 874250042
...

correct output
399407698440

user output
(empty)

Test 14

Group: 3

Verdict:

input
100000 200000
31139 12960 580545990
27744 95556 747296719
46969 42578 840321561
5638 28960 513805324
...

correct output
165235287505

user output
(empty)

Test 15

Group: 3

Verdict:

input
99993 199980
1 3 1
3 2 1
1 4 1
4 2 1
...

correct output
2

user output
(empty)

Test 16

Group: 3

Verdict:

input
100000 149994
93867 98509 1755709
85029 99843 1347591
10305 35305 6447
75638 80585 1829972
...

correct output
1124960

user output
(empty)

Test 17

Group: 3

Verdict:

input
100000 200000
70413 71496 49
15963 40963 18635
81291 89420 1850028
8848 33848 17316
...

correct output
110298

user output
(empty)