CSES - Datatähti 2016 alku - Results
Submission details
Task:Lennot
Sender:hugo-hur
Submission time:2015-10-06 15:46:21 +0300
Language:C++
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
#30
Test results
testverdicttimegroup
#1ACCEPTED0.05 s1details
#2ACCEPTED0.05 s1details
#30.06 s1details
#4ACCEPTED0.05 s1details
#5ACCEPTED0.05 s1details
#60.06 s2details
#70.07 s2details
#80.06 s2details
#90.06 s2details
#100.07 s2details
#110.43 s3details
#120.51 s3details
#130.44 s3details
#140.50 s3details
#150.38 s3details
#160.42 s3details
#170.41 s3details

Compiler report

input/code.cpp: In function 'unsigned int minDistance(std::vector<unsigned int>, std::vector<bool>)':
input/code.cpp:31:9: warning: 'min_index' may be used uninitialized in this function [-Wmaybe-uninitialized]
  return min_index;
         ^

Code

#include <iostream>
#include <list>
#include <vector>
#include <limits.h>

using namespace std;
class Flight
{
public:
	Flight(unsigned int from, unsigned int to, unsigned int price);
	unsigned int from, to, price;
};
Flight::Flight(unsigned int from, unsigned int to, unsigned int price){
	this->from = from; this->to = to; this->price = price;
}
// Number of vertices in the graph
unsigned int V = 4;
unsigned int minDistance(std::vector<unsigned int> dist, std::vector<bool> sptSet)
{
	// Initialize min value
	unsigned int min = UINT_MAX;// , min_index;//INT_MAX, min_index;
	unsigned int min_index;

	for (unsigned int v = 0; v < V; v++){
		if (sptSet[v] == false && dist[v] <= min){
			min = dist[v];
			min_index = v;
		}
	}

	return min_index;
}
// A utility function to print the constructed distance array
/*void printSolution(unsigned int dist[], int n)
{
	std::cout << "Vertex   Distance from Source" << std::endl;//printf("Vertex   Distance from Source\n");
	for (int i = 0; i < V; i++)
		printf("%d \t\t %d\n", i, dist[i]);
}*/
// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
std::vector<unsigned int> dijkstra(vector<vector<unsigned int>> graph/*[V][V]*/, int src)
{
	
	//unsigned int* dist = new unsigned int[V];     // The output array.  dist[i] will hold the shortest
	std::vector <unsigned int> dist;
	// distance from src to i

	//bool* sptSet = new bool[V]; // sptSet[i] will true if vertex i is included in shortest
	std::vector <bool>sptSet;
	// path tree or shortest distance from src to i is finalized

	// Initialize all distances as INFINITE and stpSet[] as false
	for (unsigned int i = 0; i < V; i++){
		dist.push_back(UINT_MAX); sptSet.push_back(false);
	}//dist[i] = INT_MAX, sptSet[i] = false;

	// Distance of source vertex from itself is always 0
	dist[src] = 0;

	// Find shortest path for all vertices
	for (unsigned int count = 0; count < V - 1; count++)
	{
		// Pick the minimum distance vertex from the set of vertices not
		// yet processed. u is always equal to src in first iteration.
		int u = minDistance(dist, sptSet);

		// Mark the picked vertex as processed
		sptSet[u] = true;

		// Update dist value of the adjacent vertices of the picked vertex.
		for (unsigned int v = 0; v < V; v++)

			// Update dist[v] only if is not in sptSet, there is an edge from 
			// u to v, and total weight of path from src to  v through u is 
			// smaller than current value of dist[v]
			if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX	&& dist[u] + graph[u][v] < dist[v]){
				dist[v] = dist[u];
				if (v % 2 != 0){//Every other flight is free
					dist[v] += graph[u][v];
				}
				//dist[v] = dist[u] + graph[u][v];
			}
	}

	// print the constructed distance array
	//printSolution(dist, V);
	//delete[] dist;
	//delete[] sptSet;
	return dist;
}
/*unsigned int** createMatrix(std::vector <Flight> flights){
	//unsigned int* matrix = new unsigned int[3];
	//unsigned int** matrix2 = new unsigned int*[flights.size()];
	//matrix2
}*/
vector<vector<unsigned int>> createGraph(vector<Flight> flights, unsigned int n){
	unsigned int v = n;//flights.size();
	vector<vector<unsigned int>> graph;
	for (unsigned int i = 0; i < v; i++){
		//unsigned int* p = new unsigned int[v];
		graph.push_back(vector<unsigned int>());
		for (unsigned int z = 0; z < v; z++){
			graph.back().push_back(0);
		}
	}
	//Arrange flights by "from"
	//For all flights with start point of 1 check the price to dest
	for (Flight f : flights){
		graph[f.from - 1][f.to - 1] = f.price;
	}
	return graph;
}
// Driver program to test methods of graph class
int main()
{
	/* Let us create the example graph discussed above */
	//Price as a distance
	
	unsigned int n = 0;
	unsigned int m = 0;
	cin >> n;
	cin >> m;
	V = n;
	vector<Flight> flights;
	for (unsigned int i = 0; i < m; i++){
		unsigned int from, to, price;
		cin >> from >> to >> price;
		flights.push_back(Flight(from, to, price));
	}
	//cin >> V;
	//vector<Flight> flights;
	//flights.push_back(Flight(1, n, 100));
	//flights.push_back(Flight(1, 2, 10));
	//flights.push_back(Flight(2, n, 10));
	vector<vector<unsigned int>> graph = createGraph(flights, n);
	
	//graph[0][1] = 3;
	//graph[0][2] = 5;
	//graph[1][0] = 2;
		//{ 0, 0, 0, 9, 0, 10, 0, 0, 0 },
		//{ 0, 0, 4, 0, 10, 0, 2, 0, 0 },
		//{ 0, 0, 0, 14, 0, 2, 0, 1, 6 },
		//{ 8, 11, 0, 0, 0, 0, 1, 0, 7 },
		//{ 0, 0, 2, 0, 0, 0, 6, 7, 0 }
	

	unsigned int price = dijkstra(graph, 0).back();
	std::cout << price << std::endl;
	return 0;
}

Test details

Test 1

Group: 1

Verdict: ACCEPTED

input
10 20
2 1 3
7 6 4
1 6 7
1 6 1
...

correct output
8

user output
8

Test 2

Group: 1

Verdict: ACCEPTED

input
10 20
4 3 10
1 10 9
3 4 10
2 6 7
...

correct output
9

user output
9

Test 3

Group: 1

Verdict:

input
10 20
5 7 4
6 1 1
7 3 8
8 4 2
...

correct output
8

user output
11

Test 4

Group: 1

Verdict: ACCEPTED

input
10 20
1 6 2
5 3 3
7 3 6
5 6 2
...

correct output
13

user output
13

Test 5

Group: 1

Verdict: ACCEPTED

input
10 20
10 8 5
2 4 7
9 4 7
9 4 1
...

correct output
4

user output
4

Test 6

Group: 2

Verdict:

input
1000 2000
91 828 365044406
17 984 445675537
251 852 100987451
907 487 58830088
...

correct output
11893353673

user output
2061018241

Test 7

Group: 2

Verdict:

input
1000 2000
722 939 530579090
404 606 268877348
133 750 760086153
506 46 582310443
...

correct output
30248963445

user output
2856973885

Test 8

Group: 2

Verdict:

input
1000 2000
340 237 43690066
217 141 453160975
744 202 639037814
605 926 404985542
...

correct output
3126797692

user output
1330193390

Test 9

Group: 2

Verdict:

input
1000 2000
88 312 190442306
480 402 411574469
29 901 397491243
636 459 323246996
...

correct output
18416073173

user output
1919193793

Test 10

Group: 2

Verdict:

input
1000 2000
333 228 718389176
796 286 323493090
743 43 751876815
128 554 175625940
...

correct output
6399349335

user output
2333890971

Test 11

Group: 3

Verdict:

input
100000 200000
28264 92686 186865663
92570 33956 925976418
87377 71249 644757113
16701 81203 922125505
...

correct output
518249578675

user output
(empty)

Test 12

Group: 3

Verdict:

input
100000 200000
95740 71482 846654568
44131 16806 670712211
3967 49254 424174139
39369 53007 830346557
...

correct output
920862321580

user output
(empty)

Test 13

Group: 3

Verdict:

input
100000 200000
79947 25489 71554257
59184 25577 328436360
82945 73554 4942918
22380 92385 874250042
...

correct output
399407698440

user output
(empty)

Test 14

Group: 3

Verdict:

input
100000 200000
31139 12960 580545990
27744 95556 747296719
46969 42578 840321561
5638 28960 513805324
...

correct output
165235287505

user output
(empty)

Test 15

Group: 3

Verdict:

input
99993 199980
1 3 1
3 2 1
1 4 1
4 2 1
...

correct output
2

user output
(empty)

Test 16

Group: 3

Verdict:

input
100000 149994
93867 98509 1755709
85029 99843 1347591
10305 35305 6447
75638 80585 1829972
...

correct output
1124960

user output
(empty)

Test 17

Group: 3

Verdict:

input
100000 200000
70413 71496 49
15963 40963 18635
81291 89420 1850028
8848 33848 17316
...

correct output
110298

user output
(empty)